Collective Mind: Core CBM+ Capability

Applying Predictive Trending within CAMEO: Exploration and Explanation of Anomalous Patterns

Dr. Artur Dubrawski
Auton Lab
Carnegie Mellon University

Dr. Norman Sondheimer
University of Massachusetts
Amherst

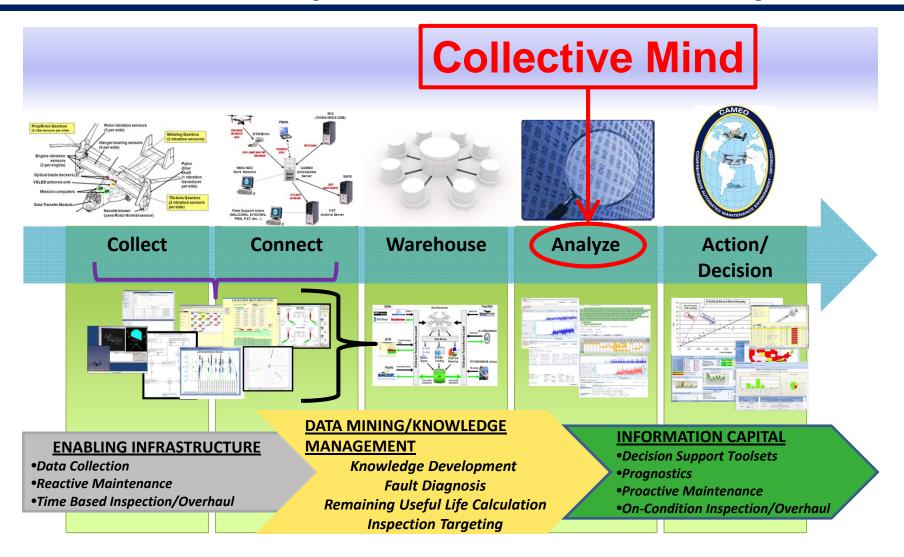
The CAMEO Collective Mind Experiment

This briefing:

- 1. Collective Mind Mission: To Support Proactive Approach to Fleet Health Management
- 2. Means: Collective Mind develops analytic capabilities to provide early warnings and explanation of emerging reliability issues
- 3. Targeted capabilities:
 - Massive Screening for abnormal patterns
 - Systems Performance Monitor for identification of anomalous items

Today's Topics

- Exploration of identified patterns across streams
- Explanation and prediction of patterns
- 4. Taking the Collective Mind approach to other aircraft and other platforms

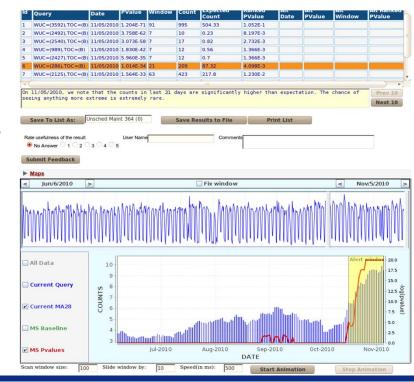

Challenges of Proactive Approach to Fleet Health Management

- Unexpected systematic fleet-wide problems are common
- Their early detection and characterization is the key to proactive management
 - Various leading indicators are used to (reactively) survey the status of fleet
 - Physics-based models are used to identify propensity of individual aircraft to <u>known</u> problems
- Ideal capability:
 Fast and accurate detection of emerging issues, no false alarms
- Not easy to achieve...

Ground abort rate
Air abort rate
MAF total air abort rate (home station air aborts + J diverts)
Code 3 break rate
8-/12-hour fix rate
Repeat rate
Recur rate
Logistics departure reliability
Average deferred/delayed discrepancies per aircraft
Discrepancies awaiting maintenance (AWM) or awaiting parts (AWP)
MSE rate
Functional check flight (FCF) release rate
CANN rate
Issue effectiveness rate
Stockage effectiveness rate
Bench-stockage effectiveness rate
Mission capability (MICAP) aircraft part rate
Average repair cycle days
Phase flow—a phase time distribution interval (TDI)

Forward-looking Maintenance Metrics

CAMEO: An Enabling Infrastructure to Facilitate Implementation of CBM+ Systems


Key Capabilities of Collective Mind

- Typical logistics data spans multiple streams and multiple dimensions
 - Maintenance, built-in-test, vibration, configuration, flight data, supply, etc.
 - Maintenance: action taken code, when discovered, aircraft configuration, mission type, squadron, etc.
- This leads to <u>billions</u> of potentially interesting projections of data
- Traditionally, data surveillance is selective and of limited sensitivity
 - Comprehensive approach is often deemed computationally infeasible
 - Analytic resources come in short supply
 - Risk of missing critical clues is substantial
 - Emerging issues identified later than they could

CM capabilities address those challenges:

- 1. Massive Screening of highly multivariate data for abnormal patterns (fleet level)
- 2. Systems Performance Monitor (detecting "Bad Actors")
- 3. Exploration of identified patterns across streams
- 4. Explanation and prediction of patterns

 <u>Using routinely collected data</u> (doing more without more)

Newer Collective Mind Capabilities: Multi-Stream Analysis

One type of Collective Mind cross-stream screenings:

- Identify which maintenance activities form significantly regular sequential correlations with certain Built-In-Test (BIT) alerts
 - Example use: Evaluating effectiveness of the existing testing protocols and need for new Built-In-Test subsystems

Other examples of Collective Mind cross-stream analysis – Explaining and predicting vibration exceedences:

- Correlate flight conditions with vibration patterns to explain some of the observed exceedences
 - Example use: Dismiss some exceedences as not linked with any mechanical fault to reduce investigative efforts of ground crews
- Monitor patterns of vibrations to predict upcoming exceedences ahead of their occurrence
 - Example use: Preemptive maintenance

Collective Mind: Underlying Technology

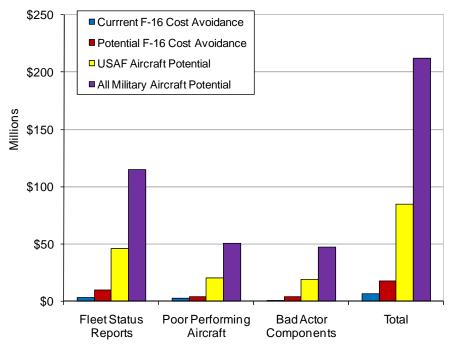
 Collective Mind leverages advanced statistics, smart data structures, fast algorithms

Example: T-Cube - CMU-developed cached sufficient statistics data structure capable of reducing time to respond to complex count queries by 1-3 orders of magnitude when compared to alternatives

T-Cube efficiency enables:

- Massive scale multivariate analyses of very large sets of multidimensional data
- Interactive visualizations of data
- Automated and highly responsive manual ad-hoc analyses

Key practical benefits:


- Comprehensive searches for unusual patterns made possible
 "We don't know what we don't know" dilemma can be substantially mitigated
- Interactive visualizations and queries boost situational awareness and understanding of the processes that produce data

Side notes on T-Cube performance

- 1. Query response times do not depend on the number of records in data
 - Largest set loaded so far:
 125M records, 15 dimensions
 - Minutes to screen for patterns over 4 dimensions, evaluating 4.5B hypotheses
- 2. Memory footprint varies with complexity of data
 - Most complex data loaded so far: 7.7M records, 19 dimensions, 5.2*10²⁵ unique data cube cells, 478B of them with non-zero counts
 - Requires 10GB of memory
- 3. Speed can be traded for memory

Quantified Task: Avoided Cost of Part Exchanges

Evidence obtained with help from the F-16 Strategic Analysis Support Section and the US Air Force Cost Analysis Directorate

- Those savings only reflect avoided exchanges
- More potential, not yet estimated firmly, includes a few relatively straightforward benefits:
 - Improved equipment availability
 - Improved mission capability
 - Reduction of analytic efforts
- Costs of transition to regular use is not included in the estimates

- **F-16**: Return from subset analyzed from early detection and mobilization: **\$6.5M** p.a.; Expected return once fully deployed: **\$18.0M** p.a.
- Scaling to all military aircraft: \$212M p.a.

Observed cost of integrating platform data into T-Cube:

- Once established with GCSS-AF, adding new aircraft type took 8hrs to setup
- Transfer of Massive Screening, System
 Performance Monitor and Basic Exploration and Explanation from GCSS-AF to NALCOMIS and DECKPLATE V-22 data took 1 man-month
- Larger effort to integrate into the CAMEO analysis processes
- Modest additional investment should enable scaling Collective Mind throughout DoD aircraft fleets and throughout all DoD equipment fleets wherever logistics data warehouses exist

Collective Mind: Summary

- 1. Collective Mind develops new capabilities to support a proactive approach to Fleet Health Management
- 2. It uses statistical data mining and predictive trending to monitor routinely collected data for early indications of reliability issues
- 3. Capabilities developed so far have demonstrated utility using the USAF and NAVAIR aircraft maintenance, built-in-test, and vibration data
- 4. Hypothesis: Applicability is not limited to USAF and NAVAIR environments -- benefits should be found in all areas of CBM+ interest

Contact Information

Carnegie Mellon

Carnegie Mellon University 5000 Forbes Avenue, NSH 3121 Pittsburgh, PA 15213-3890, USA

Artur Dubrawski

Director, Auton Lab Senior Systems Scientist, Robotics Institute Adjunct Professor, Heinz College, School of Information Systems and Management

Tel: 412-268-6233 Fax: 412-268-7350

E-mail: awd@cs.cmu.edu

www.autonlab.org

